Mechanism of Inhibition of Cyclic Nucleotide–Gated Channel by Protein Tyrosine Kinase Probed with Genistein

نویسندگان

  • Elena Molokanova
  • Richard H. Kramer
چکیده

Rod cyclic nucleotide-gated (CNG) channels are modulated by changes in tyrosine phosphorylation catalyzed by protein tyrosine kinases (PTKs) and phosphatases (PTPs). We used genistein, a PTK inhibitor, to probe the interaction between the channel and PTKs. Previously, we found that in addition to inhibiting tyrosine phosphorylation of the rod CNG channel alpha-subunit (RETalpha), genistein triggers a noncatalytic inhibitory interaction between the PTK and the channel. These studies suggest that PTKs affects RETalpha channels in two ways: (1) by catalyzing phosphorylation of the channel protein, and (2) by allosterically regulating channel activation. Here, we study the mechanism of noncatalytic inhibition. We find that noncatalytic inhibition follows the same activity dependence pattern as catalytic modulation (phosphorylation): the efficacy and apparent affinity of genistein inhibition are much higher for closed than for fully activated channels. Association rates with the genistein-PTK complex were similar for closed and fully activated channels and independent of genistein concentration. Dissociation rates were 100 times slower for closed channels, which is consistent with a much higher affinity for genistein-PTK. Genistein-PTK affects channel gating, but not single channel conductance or the number of active channels. By analyzing single channel gating during genistein-PTK dissociation, we determined the maximal open probability for normal and genistein-PTK-bound channels. genistein-PTK decreases open probability by increasing the free energy required for opening, making opening dramatically less favorable. Ni(2+), which potentiates RETalpha channel gating, partially relieves genistein inhibition, possibly by disrupting the association between the genistein-PTK and the channel. Studies on chimeric channels containing portions of RETalpha, which exhibits genistein inhibition, and the rat olfactory CNG channel alpha-subunit, which does not, reveals that a domain containing S6 and flanking regions is the crucial for genistein inhibition and may constitute the genistein-PTK binding site. Thus, genistein-PTK stabilizes the closed state of the channel by interacting with portions of the channel that participate in gating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions of Cyclic Nucleotide-Gated Channel Subunits and Protein Tyrosine Kinase Probed with Genistein

The cGMP sensitivity of cyclic nucleotide-gated (CNG) channels can be modulated by changes in phosphorylation catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases. Previously, we used genistein, a PTK inhibitor, to probe the interaction between PTKs and homomeric channels comprised of alpha subunits (RETalpha) of rod photoreceptor CNG channels expressed in Xenopus oocy...

متن کامل

Noncatalytic Inhibition of Cyclic Nucleotide–gated Channels by Tyrosine Kinase Induced by Genistein

Rod photoreceptor cyclic nucleotide-gated (CNG) channels are modulated by tyrosine phosphorylation. Rod CNG channels expressed in Xenopus oocytes are associated with constitutively active protein tyrosine kinases (PTKs) and protein tyrosine phosphatases that decrease and increase, respectively, the apparent affinity of the channels for cGMP. Here, we examine the effects of genistein, a competit...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

Direct inhibition of the pacemaker (If) current in rabbit sinoatrial node cells by genistein.

Genistein is a tyrosine kinase inhibitor which interferes with the activity of several ionic channels either by altering modulatory phosphorylating processes or by direct binding. In whole-cell conditions, genistein induces a partial inhibition of the pacemaker (I(f)) current recorded in cardiac sinoatrial and ventricular myocytes. We investigated the mechanism of action of genistein (50 microM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2001